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of Germany 
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Abstract. The Ising quantum-chain with staggered three-spin coupling is studied for free 
and torodial boundary conditions. The operator content of the finite-size limit of the 
spectra is conjectured. It is found to be related to the operator content of the Ashkin-Teller 
model. 

The Ising quantum chain with 3 N sites with staggered three-spin coupling is defined 
by (Alcaraz and Barber 1987) 

1 N-1 

H = - -  1 { a ; i d i + l a ; j + Z  + ~ ~ ; i + 1 a ; i + Z d i + 3  + ~ a ; i + 2 d i + 3 ~ ; i + 4  N i=o 

+ A ( + a:j+l + E ( T ; ~ + ~ ) } .  

v X  and a’ are Pauli matrices, E is the coupling constant, A plays the role of an inverse 
temperature. The model is self-dual and has a second-order phase transition at A = 1 
for O <  [ E I S  1 corresponding to a Virasoro algebra with c =  1. X is a constant which 
has to be chosen such that H is conformally invariant (see below). By numerical 
studies of H with periodic and free boundary conditions (BC), Alcaraz and Barber 
(1987) and Igl6i (1988) found exponents occurring in the Ashkin-Teller (AT) model 
(Ashkin and Teller 1943, Baake er al 1987a, b). 

The aim of this paper is to give a conjecture of the operator content for free and 
toroidal BC and to verify it numerically. For this purpose H was diagonalised for 
chains up to 19 (free BC), respectively 21 (toroidal BC) sites for the domain -1 G E d 1. 
The spectra are found to be the same for - E  and E. The conjectured operators are 
identical to those of the AT model for positive E.  For E = 0 the three-spin model has a 
trivial solution, whereas the AT model decouples into two independent Ising models. 

This paper is organised as follows. First we define the various BC and discuss the 
symmetries of the three-spin model. After a short review of the symmetries of the AT 

model we give the conjectured operator content of the three-spin model and discuss 
the relations to the AT model. 

We first consider toroidal boundary conditions. Because of the staggered coupling, 
the situation is different for 3N and 3 N + p  sites ( p  = 1,2).  

Periodic boundary conditions for chains with 3N sites (1) are defined by a;N = cr: 
and a&.,+, = a;. The resulting Hamiltonian (denoted by H 3 N )  has a Z20Z2  symmetry 
generated by the ‘charge’ operators 

i = O  i = O  
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This group allows us to decompose the spectra of 
eigenvalues of Po and P2. 

into sectors labelled by the 

Po and P2 are invariant under translation of three steps: 

T: U, + ~ i + 3  U E {UX, U = } .  (3) 

This operation has been used to prediagonalise H3N into sectors with different momenta 
K E (0.. . N -  1 )  defined by the eigenvalues of T=exp[(2xi /N)K].  

H 3 N  also commutes with the reflection 

s : f l f + u 3 N - l - i .  (4) 

SPO = P2S ( 5 )  

S and T obey S T  = T-'S  and thus span DN. S does not commute with the charges: 

it allows us to split the sectors with momentum zero and charges ++ (i.e. Po=+l,  
P2 = $ 1 )  and --. 

Because of (5), the 'inner' and the 'dynamical' symmetry ( Z 2 0 Z 2  and DN) are not 
independent. The total symmetry group G is a semidirect product of Z 2 0 Z 2  and D N  : 

G = (Z2O Z2) Os D N  ( 6 )  
where Z 2 0 Z 2  is normal in G. 

The Z 2 0 Z 2  allows one to define four toroidal boundary conditions for H3+, : 

BC (+;N d N + I  

++ CO" U; 

-+ -a; -U; 

+- UO" -U; 

-- -U; U;. 

The resulting Hamiltonians are denoted by H z h  for BC ab, (a ,  b E {+, -}, H3N = H;;). 
They all have the Z 2 0 Z 2  symmetry and are invariant under the modified translation 

7 = BObT (7) 
where Bob depends on the BC ab and acts on the first three sites of a chain: 

B++ = 1 B-+ = u;u; B+- = u;ui B-- = uiu;. (8) 

Po and P2 commute and have been used to prediagonalise the Hamiltonians H,"k. 
The symmetry is larger for E = 1. Since there is no staggered coupling at this point, 

H3N is additionally invariant under translation of one step 

t : U, + Ui+l .  ( 9 )  
t does not commute with the charges: 

Pot = tP2 P2 t = tPoP,. 

Po, P2, t and S span a semidirect product of Z 2 0 Z 2  with D3N 

GI = (352022) Os D3N. ( 1 1 )  
Again the inner and dynamical symmetries are not independent. 

by changing the sum Z,"=,' to 
uf = 0 for i > 3 N + p  + 1. The resulting Hamiltonian is denoted by H3N+p. 

We now consider the case of 3 N + p  sites ( p  = 1 , 2 ) .  We define periodic BC for ( 1 )  
and choosing uTN+p = ut, u;N+p+l = U; and U; = 
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For E # 1 there is no invariance under translation or reflection. Furthermore, there 
are no conserved charges similar to Po and P 2 .  At the point E = 1 H 3 N + p  commutes 
with t and S (here: S :  ui + U 3 3 N - e p - l - i ) .  As will be seen later, H 3 N + p  with E = 1 can be 
interpreted as an additional toroidal BC related to the higher symmetry of H 3 N  at E = 1. 
In this paper we only consider this value of the coupling constant. The case E # 1 is 
currently being investigated. 

The staggered coupling allows us to define three types of free boundary conditions 
for (1)  (Igl6i 1987). A Hamiltonian H < N + p  of type f with 3 N + p  sites ( p , f ~ { O ,  1,2}) 
is defined by 

where 

a? = uf = 0 
for j > 3 N + p - l  
f o r j 7 3 N - t ~  and j = O  for type f = 1 (13) 

for type f = 0 

for type f = 2. I for j > 3 N + p + l  and j = O ,  1 
J J  

H { N + p  commutes with the charge operators defined analogous to (2) for each number 
of sites: 

N N 

Po = n uSiu;i+l p 2  = v; i+l (+Si+2* (14) 
i = O  i = O  

with U; = 1 for undefined j (see (13)). 
The behaviour under reflection S: ui + ~ 3 N + p - 1 - i  depends on the type f: A chain 

with 3 N + p  sites and type f = p  is invariant, whereas the two other types f # p are 
mapped to each other: 

H $ N + p S  = s H $ N + p  H$;+,S = SH$&?+, . (15)  

SPO = P2S. (16) 

The charges are mapped according to 

Because of (15) and (16), only seven of the twelve charge sectors of the three types 
of chains are independent. 

The connection between the different types and the operators Po, P2 and S can be 
understood in the following way. Let i be the operation which increases the type f 
by one: 

i H { N t p  = H G + p  P = 1  (17) 
which is something like a translation of the chain on the ‘grid’ of the staggered coupling 
constants. For E = 1 the three types are identical, and commutes with i for 
each f and p. i obeys 

P o i =  ip2 P2 i = iPoP2 S i =  ?-‘S. (18) 

Thus Po, P2,  S and i span (Z20Z2) 0, D3 which is isomorphic to a subgroup of G1 
(11) .  So the existence of the three types of free BC can be understood as a consequence 
of the additional Z3 symmetry of the system at the point E = 1. 
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After this discussion of the symmetries for the three-spin model, we give a review 
of the situation for the AT model. For details we refer to Baake et a1 (1987a, b). 

The AT model consists of two commuting Ising models coupled through a parameter 
E. The total symmetry group for a quantum chain with N sites and periodic BC is a 
direct product of the inner symmetry group D, = {CiZJ I i = 0, 1 ;  j = 0, 1,2 ,3;  C 2  = 
1; X4 = 1; CX = X-’C} with the dynamical symmetry group D N  spanned by reflection 
(or ‘parity’) and translation. For E = 1 the model is identical to the four-state Potts 
model (Potts 1952). Here the inner symmetry increases to S 4 = D 4 0 s  Z 3 =  
{iliC’Xk 1 i = 0, 1 , 2 ; j  = 0 , l ;  k = 0,1,2,3} .  

The D, allows us to define five classes of toroidal BC: 

I: 1 11: X2 111: CX, CX3 IV: cx2 v: X , X 3 .  

The larger symmetry S4 at the Potts point E = 1 allows us to define a class of BC which 
contains no elements of D4 (Grimm 1988). This class is represented by an element 
il E S, of order three. 

We now turn to determining the operator content of the three-spin model for 
toroidal boundary conditions. 

The quantities 

define the finite-size spectrum (Cardy 1984, 1986, von Gehlen and Rittenberg 1986), 
where Ezi;fp( E, 3 N )  is the ith energy level of H$ with momentum K ,  charges cd and 
3 N sites. S labels the sectors with S decomposition. Note that the gaps %‘zi:td( E )  are 
defined relative to the groundstate Ei<iff(J E ) ,  3 N )  with positive coupling constant ) E ) .  

The extrapolation N + m  has been done with the algorithm of Bulirsch and Stoer 
(1964), (see also Henkel and Schiitz 1988). 

It is a consequence of conformal invariance in two dimensions that the %‘2i:8d(~) 
can be described in terms of irreducible representations (irreps) of two commuting 
Virasoro algebras L,, E, with central charge c = 1:  

[L,, L,] = ( n  - m)L,+,,,  + & c n ( n 2 -  1)6,,-., n, m E Z .  (20) 
An irrep (A,  A) characterised by the highest weights A and A 

LolA, A) = AlA, 3) 

generates a level 

8, = ( A + r ) + ( & + P )  

with momentum 

K = (A  + r )  - (5 + P) (23) 

For c = 1 d ( A ,  r )  is independent of A and equal to the function r ( r )  determined 
and degeneracy d (A,  r )  d (A, P), r, P E NO. 

by the partition function 
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unless A = t 2 / 4 ,  where t is an integer. In this case d (at’, t )  is determined by the partition 
function (Kac 1979) 

m 

( l -q(+l )T”(q)=  d ( y ,  I.)$.  
r = O  

The factor X of the Hamiltonian H has been chosen such that 

(von Gehlen et a1 1985). The data for X are listed in table 1. 

Table 1. Normalisation factor N of Hamiltonian (1). 

E x 

0.01 0.0424 
0.1 0.4214 
0.2 0.8282 
0.4 1.569 
0.5 1.901 
0.8 2.760 
1 .o 3.224 

The E“R;’d(&, 3 N )  have been computed for chains of up to 21 sites. The following 
sectors are found to be identical: 

3 N )  = E ~ , ? ( E ,  3 N )  = 3 N )  (27) 
with a, b, c, d E {+, -}. Thus only seven of the sixteen charge sectors for the four BC 

are independent. 
As mentioned above, the spectra are identical for positive and negative coupling 

constants. The mapping is as follows: 

E 2 : d ( - ~ , 3 N ) = E $ , ; . C d ( ~ , 3 N )  N even (28) 

N odd 

for each E > 0, K E No and S E {+, -} where I? = ( N / 2  - K )  mod N. 
Because of the occurrence of antiferromagnetic Yaves, the momenta k o f  

E;KJ’+-(-E, 3 N )  and E$:*+-(-&, 3 N )  defined through T =  exp[ (2~ i /N) I? ]  are not 
identical to the momenta K defined in (23). 
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The finite-size scaling spectra S“,brfp(~) can be described in terms of sectors of the 

(a) Sectors with integer momentum K 
AT model. We use the notation of Baake et al (1987a, b) and define two sectors. 

d = ({O), {OI)O({11, { l I ) O d l  

93 = ((01, { l ) )O({l ) ,  {O))Od, 

dl = @ (((n + 1)2h, (n + 1)’h)O ( ~ 

2 ’ 2  n 2 O  

OR(4,4;4,41h)@R(4,4;  -4, -41h) 

%=R(4,2;4,21h)@R(4,4;  -4, -21h) 

(2n + 1)’ (2n + 1)2 

(2n + 1)’ (2n + 1)’ 

(30) ) 0 R ( 2 , l ;  4,41 h ) O  R( -2, - 1; 4,41 h) 

) 0 R(4,2; 4,41h)O R(4,2; -4, -4)h) 

‘=,?O( 16h ’ 16h 

4h ’ 4h 

[&I1 = 8 [h(8k+3)’1 
k s Z  

and ( A )  is an irrep of the Virasoro algebra (20) with highest weight A (see equation 
(21)). Since the operator content depends on I E ~ ,  we define 

I7 
h =  

4 Cos-y-lsl)’ (33) 

Table 2 shows the conjectured operator content. It has been verified numerically. 
Table 3 illustrates a part of the data. 

Comparing these results with the AT model, we observe that the operator content 
is the same if we identify the charges Po and P2 with the elements CX3 and CP of the 
AT D4. CX3 and CZ generate a Z2@Z2 subgroup of D4. Furthermore G (6) and G ,  
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Table 2. Conjectured operator content for toroidal BC. 

BC PO p2 Operator content 

-+ +- 9 
-+ 8 

( 1 1 )  can be understood as subgroups of the AT symmetry groups D ~ @ D N  and S 4 @ D N .  
No operator has been found yet which corresponds to C E D 4 .  Note that the reflection 
S is not equivalent to C because it is not a local operator, i.e. it does not commute 
with the translation T. Because of the lack of 'C' operation for the three-spin model, 
only those BC are realised which are equivalent to the AT BC I, I1 and 111. 

We now present the results for chains with 3 n  + p  sites ( p  = 1 , 2 )  and periodic BC. 

The quantities 

define the finite size spectrum. As mentioned above, we only consider the case E = 1 .  
E i ( 3 N + p )  is the ith eigenvalue of H3N+p. The reference energies E 0 ( 3 N + p )  have 
been calculated by interpolating the ground-state energies E:+:;"( E = 1 , 3 N )  with 
polynominals such that E0(3N)  = Eo+,, ( E  = 1 , 3 N ) .  

The extrapolation has been done for fixed p and chains of up to 17 sites. We 
observed S: = Sf. The 87 are found to be identical with the lower part of the operator 
content of the AT model with i2 BC at the Potts point E = 1 .  This is given by (Grimm 
1988): 

where 

++,++ 

((i) ,  (d>)O ((f), (3) ( 3 5 )  

= 8 ( ( m  + + I 2 ) .  ( d )  = 8 ( ( m  
m s Z  m e 2  

Thus the chain with 3 N + p  ( p  = 1 , 2 )  sites can be understood as an additional BC 

caused by the higher symmetry at E = 1 .  
We turn now to determining the operator content for free boundary conditions. 

The quantities 
3 N + p  

gpb,f.p = N-aa lim - ( E p b , f ( 3 N + p ) -  E : + J ( 3 N + p ) )  

define the finite size spectrum (Cardy 1984, 1986, von Gehlen and Rittenberg 1986) 
for a fixed type J: E 4 b * f ( 3 N + p )  is the ith eigenvalue of H { N + p  in the charge sector 
ab. The spectrum has been calculated for chains up to 19 sites. It is identical for 
positive and negative E for each a, b, f and p ,  

The spectra 8pbLp are generated by unitary irreps of one Virasoro algebra (20). 
An irrep characterised by the highest weight A 

LOIA) = A I 4  (37) 
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Table 3. Extrapolated levels c&ibk:,d (equation (19)) for toroidal, non-periodic BC and E = 0.2. 

Theoretical 
BC Po p2 K A + i + r + P  d Extrapolated 

+- +- 1 
I 
1 
I 
3 
I 
3 
2 
1 

1 

3 

3 

I 

3 

I 

I 
2 
I 
I 
I 
I 
I 

0 
0 
1 
1 
2 
0 
0 
1 
1 
2 
0 
1 
0 
2 
0 
1 
2 
1 

_ _  _ _  

+- -+ 0 
0 
1 
1 
2 
1 
1 
2 
2 
0 
0 
1 
0 

0.625 
0.625+1+1 
0.625 + 1 + 0 
0.625 +2+ 1 
1.625 + O+ 1 
1.625 + 2 + 0 

0.503 64 
0.503 64+ 1 + 1 
0.503 64+ 1 + 0 
0.503 64+ 2+ 1 
0.500 96+ 1 + O  
0.500 96 + 2 + 1 
0.500 96+ 2 + 0 
2.276 39 
2.27639+0+1 
2.760 02 
2.760 02 + O+ 1 

0.886 38 
0.886 38+ 1 + 1 
0.886 38+ 1 + O  
0.886 38 + 2 + 1 
0.886 38+2+0 
1.128 19 
1.128 19+1+1 
1.128 19+1+0 
1.128 19+2+1 
1.128 19+2+0 
3.545 51 
1 
1+1+2 
1+1+0 
1 + 2 + 1  
1+2+0 
2.014 56 
2.014 56+0+1 

0.282 05 
0.28205+1+1 
0.282 05 + 1 + 0 
0.282 05 +2+ 1 
0.282 05 +2 + O  
1.168 42 
1.168 42+ 1 + 1 
1.168 42 + 1 + O  
1.168 42 + 2 + 1 
1.168 42+ 1 + O  
1.16842+2+1 
1.168 42+2 + O  
2.538 42 

1 
1 
1 
2 
1 
2 
2 
1 
1 
1 
1 

1 
1 
1 
2 
2 
1 
1 
1 
2 
2 
1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
1 
2 
2 
1 
I 
1 
2 
1 
2 
2 
1 

0.6250 (2) 
2.623 (6) 
1.625 (2) 
3.5 (2) 3.6 (1) 
2.620 (5) 
3.6 (1) 3.61 (7) 

0.5039 (2) 
2.50 (1) 
1.501 (6) 
3.44 (5) 3.50 (1) 
1.504 (1) 
3.4 (2) 3.4 (2) 
2.43 (3) 2.43 (1) 
2.25 (1) 
3.2 (1) 
2.763 (4) 
3.7 (2) 

0.8815 (1) 
2.8 (1) 
1.879 (5) 
3.7 (4) 3.86 (3) 
2.7 (1) 2.81 (2) 
1.1342 (5) 
3.1(1) 
2.130 (5) 

3.05 ( 5 )  3.04 (4) 
3.9 (2) - 

3.49 (4) 
1.000 (1) 
3.8 (1) 
1.91 (2) 
4.00 (2) 
3.02 (1) 
2.01 (1) 
2.97 (2) 

0.26638 (4) 
2.23 (3) 
1.285 (2) 
3.11 (6) 3.09 (1) 
2.27 (4) 2.23 (1) 
1.165 (1) 
3.1 (1) 
2.14 (4) 
3.9 (1) 3.7 (2) 
2.165 (2) 
4.2 (2) - 
3.07 (1) - 
2.55 (1 )  
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Table 4. Conjectured operator content for free BC. 

P f Charges Operator content 

0 0 

1 

1 1 

0 

2 2 

0 

++ Do.0 + 4 
D0.I + D 

++ Do.0 + D 

-+ Do,, + l j  

++ Do.0 + 4 

++ Do,,+ e 
+- DO,, + 6 

++ Do,,+ 4 
++ Do,o+ 6 

-+ D0.I + 6 

_ _  
+- D 

D 
+- D 
-- 

DO,I+ D _ _  
+- D 

D 

-+ D 

-- 

00.1  + D - _  
+- D 

D 
+- D 
-_ 

gives a contribution 

8 , = A + r  (38) 
to the spectra 8p. h is a surface critical exponent and the level IA + r )  has a degeneracy 
d ( A ,  r )  (24), (25) and a relative parity ( - l )r  to the level / A ) .  

are identical with the lower part of the AT sectors 
found by Baake et al (1987a). They defined 

All conjectured levels 

kz0 

DOJ = @ ( ( 2 k +  l ) Z ) + @  @ 
kzO k b l  

6 = D,,o = Dl,l = @ 

( 2 k + i ) *  + 

k r o  4h ) ’  
k s O  

(39) 

(The parities in (39) are always defined relative to the lowest level within each sector 
which is taken, by convention, to have parity +.) 

Table 4 shows the conjectured operator content. 
These results lead us to the following conjectures. 
(i) For f = p  we can identify AT and three-spin sectors choosing Po = CX3 and 

Pz = CZ as for toroidal BC (18). 
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(ii) The operator content is identical for each p and f (cf Igl6i 1987) where the 
charge sectors are mapped according to (15)-(18). 
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